Source code for oemof.solph.components

# -*- coding: utf-8 -

"""This module is designed to hold components with their classes and
associated individual constraints (blocks) and groupings. Therefore this
module holds the class definition and the block directly located by each other.

This file is part of project oemof (github.com/oemof/oemof). It's copyrighted
by the contributors recorded in the version control history of the file,
available from its original location oemof/oemof/solph/components.py

SPDX-License-Identifier: MIT
"""

import numpy as np
from pyomo.core.base.block import SimpleBlock
from pyomo.environ import (Binary, Set, NonNegativeReals, Var, Constraint,
                           Expression, BuildAction)

from oemof import network
from oemof.solph import Transformer as solph_Transformer
from oemof.solph import sequence as solph_sequence
from oemof.solph import Investment


[docs]class GenericStorage(network.Transformer): """ Component `GenericStorage` to model with basic characteristics of storages. Parameters ---------- nominal_storage_capacity : numeric Absolute nominal capacity of the storage invest_relation_input_capacity : numeric or None Ratio between the investment variable of the input Flow and the investment variable of the storage. .. math:: input\_invest = capacity\_invest \cdot invest\_relation\_input\_capacity invest_relation_output_capacity : numeric or None Ratio between the investment variable of the output Flow and the investment variable of the storage. .. math:: output\_invest = capacity\_invest \cdot invest\_relation\_output\_capacity invest_relation_input_output : numeric or None Ratio between the investment variable of the output Flow and the investment variable of the input flow. This ratio used to fix the flow investments to each other. Values < 1 set the input flow lower than the output and > 1 will set the input flow higher than the output flow. If None no relation will be set. .. math:: input\_invest = output\_invest \cdot invest\_relation\_input\_output initial_storage_level : numeric The content of the storage in the first time step of optimization. balanced : boolean Couple storage level of first and last time step. (Total inflow and total outflow are balanced.) loss_rate : numeric (iterable or scalar) The relative loss of the storage capacity per timeunit. fixed_losses_relative : numeric (iterable or scalar) Losses independent of state of charge between two consecutive timesteps relative to nominal storage capacity. fixed_losses_absolute : numeric (iterable or scalar) Losses independent of state of charge and independent of nominal storage capacity between two consecutive timesteps. inflow_conversion_factor : numeric (iterable or scalar) The relative conversion factor, i.e. efficiency associated with the inflow of the storage. outflow_conversion_factor : numeric (iterable or scalar) see: inflow_conversion_factor min_storage_level : numeric (iterable or scalar) The minimum storaged energy of the storage as fraction of the nominal storage capacity (between 0 and 1). To set different values in every time step use a sequence. max_storage_level : numeric (iterable or scalar) see: min_storage_level investment : :class:`oemof.solph.options.Investment` object Object indicating if a nominal_value of the flow is determined by the optimization problem. Note: This will refer all attributes to an investment variable instead of to the nominal_storage_capacity. The nominal_storage_capacity should not be set (or set to None) if an investment object is used. Note ---- The following sets, variables, constraints and objective parts are created * :py:class:`~oemof.solph.components.GenericStorageBlock` (if no Investment object present) * :py:class:`~oemof.solph.components.GenericInvestmentStorageBlock` (if Investment object present) Examples -------- Basic usage examples of the GenericStorage with a random selection of attributes. See the Flow class for all Flow attributes. >>> from oemof import solph >>> my_bus = solph.Bus('my_bus') >>> my_storage = solph.components.GenericStorage( ... label='storage', ... nominal_storage_capacity=1000, ... inputs={my_bus: solph.Flow(nominal_value=200, variable_costs=10)}, ... outputs={my_bus: solph.Flow(nominal_value=200)}, ... loss_rate=0.01, ... initial_storage_level=0, ... max_storage_level = 0.9, ... inflow_conversion_factor=0.9, ... outflow_conversion_factor=0.93) >>> my_investment_storage = solph.components.GenericStorage( ... label='storage', ... investment=solph.Investment(ep_costs=50), ... inputs={my_bus: solph.Flow()}, ... outputs={my_bus: solph.Flow()}, ... loss_rate=0.02, ... initial_storage_level=None, ... invest_relation_input_capacity=1/6, ... invest_relation_output_capacity=1/6, ... inflow_conversion_factor=1, ... outflow_conversion_factor=0.8) """ def __init__(self, *args, max_storage_level=1, min_storage_level=0, **kwargs): super().__init__(*args, **kwargs) self.nominal_storage_capacity = kwargs.get('nominal_storage_capacity') self.initial_storage_level = kwargs.get('initial_storage_level') self.balanced = kwargs.get('balanced', True) self.loss_rate = solph_sequence(kwargs.get('loss_rate', 0)) self.fixed_losses_relative = solph_sequence( kwargs.get('fixed_losses_relative', 0)) self.fixed_losses_absolute = solph_sequence( kwargs.get('fixed_losses_absolute', 0)) self.inflow_conversion_factor = solph_sequence( kwargs.get('inflow_conversion_factor', 1)) self.outflow_conversion_factor = solph_sequence( kwargs.get('outflow_conversion_factor', 1)) self.max_storage_level = solph_sequence(max_storage_level) self.min_storage_level = solph_sequence(min_storage_level) self.investment = kwargs.get('investment') self.invest_relation_input_output = kwargs.get( 'invest_relation_input_output') self.invest_relation_input_capacity = kwargs.get( 'invest_relation_input_capacity') self.invest_relation_output_capacity = kwargs.get( 'invest_relation_output_capacity') self._invest_group = isinstance(self.investment, Investment) # Check attributes for the investment mode. if self._invest_group is True: self._check_invest_attributes() # Check for old parameter names. This is a temporary fix and should # be removed once a general solution is found. # TODO: https://github.com/oemof/oemof/issues/560 renamed_parameters = [ ('nominal_capacity', 'nominal_storage_capacity'), ('initial_capacity', 'initial_storage_level'), ('capacity_loss', 'loss_rate'), ('capacity_min', 'min_storage_level'), ('capacity_max', 'max_storage_level')] messages = [ "`{0}` to `{1}`".format(old_name, new_name) for old_name, new_name in renamed_parameters if old_name in kwargs ] if messages: message = ( "The following attributes have been renamed from v0.2 to v0.3:" "\n\n {}\n\n" "You are using the old names as parameters, thus setting " "deprecated\n" "attributes, which is not what you might have intended.\n" "Use the new names, or, if you know what you're doing, set " "these\n" "attributes explicitly after construction instead." ) raise AttributeError(message.format("\n ".join(messages))) def _set_flows(self): for flow in self.inputs.values(): if (self.invest_relation_input_capacity is not None and not isinstance(flow.investment, Investment)): flow.investment = Investment() for flow in self.outputs.values(): if (self.invest_relation_output_capacity is not None and not isinstance(flow.investment, Investment)): flow.investment = Investment() def _check_invest_attributes(self): if self.investment and self.nominal_storage_capacity is not None: e1 = ("If an investment object is defined the invest variable " "replaces the nominal_storage_capacity.\n Therefore the " "nominal_storage_capacity should be 'None'.\n") raise AttributeError(e1) if (self.invest_relation_input_output is not None and self.invest_relation_output_capacity is not None and self.invest_relation_input_capacity is not None): e2 = ("Overdetermined. Three investment object will be coupled" "with three constraints. Set one invest relation to 'None'.") raise AttributeError(e2) if (self.investment and sum(solph_sequence(self.fixed_losses_absolute)) != 0 and self.investment.existing == 0 and self.investment.minimum == 0): e3 = ("With fixed_losses_absolute > 0, either investment.existing " "or investment.minimum has to be non-zero.") raise AttributeError(e3) self._set_flows()
[docs] def constraint_group(self): if self._invest_group is True: return GenericInvestmentStorageBlock else: return GenericStorageBlock
# Todo: accessed by
[docs]class GenericStorageBlock(SimpleBlock): r"""Storage without an :class:`.Investment` object. **The following sets are created:** (-> see basic sets at :class:`.Model` ) STORAGES A set with all :class:`.Storage` objects, which do not have an attr:`investment` of type :class:`.Investment`. STORAGES_BALANCED A set of all :class:`.Storage` objects, with 'balanced' attribute set to True. STORAGES_WITH_INVEST_FLOW_REL A set with all :class:`.Storage` objects with two investment flows coupled with the 'invest_relation_input_output' attribute. **The following variables are created:** capacity Capacity (level) for every storage and timestep. The value for the capacity at the beginning is set by the parameter `initial_capacity` or not set if `initial_capacity` is None. The variable of storage s and timestep t can be accessed by: `om.Storage.capacity[s, t]` **The following constraints are created:** Set last time step to the initial capacity if :attr:`balanced == True` .. math:: E(t_{last}) = &E(-1) Storage balance :attr:`om.Storage.balance[n, t]` .. math:: E(t) = &E(t-1) \cdot (1 - \beta(t)) ^{\tau(t)/(t_u)} \\ &- \gamma(t)\cdot E_{nom} \cdot {\tau(t)/(t_u)}\\ &- \delta(t) \cdot {\tau(t)/(t_u)}\\ &- \frac{\dot{E}_o(t)}{\eta_o(t)} \cdot \tau(t) + \dot{E}_i(t) \cdot \eta_i(t) \cdot \tau(t) Connect the invest variables of the input and the output flow. .. math:: InvestmentFlow.invest(source(n), n) + existing = \\ (InvestmentFlow.invest(n, target(n)) + existing) * \\ invest\_relation\_input\_output(n) \\ \forall n \in \textrm{INVEST\_REL\_IN\_OUT} =========================== ======================= ========= symbol explanation attribute =========================== ======================= ========= :math:`E(t)` energy currently stored :py:obj:`capacity` :math:`E_{nom}` nominal capacity of :py:obj:`nominal_storage_capacity` the energy storage :math:`c(-1)` state before :py:obj:`initial_storage_level` initial time step :math:`c_{min}(t)` minimum allowed storage :py:obj:`min_storage_level[t]` :math:`c_{max}(t)` maximum allowed storage :py:obj:`max_storage_level[t]` :math:`\beta(t)` fraction of lost energy :py:obj:`loss_rate[t]` as share of :math:`E(t)` per time unit :math:`\gamma(t)` fixed loss of energy :py:obj:`fixed_losses_relative[t]` relative to :math:`E_{nom}` per time unit :math:`\delta(t)` absolute fixed loss :py:obj:`fixed_losses_absolute[t]` of energy per time unit :math:`\dot{E}_i(t)` energy flowing in :py:obj:`inputs` :math:`\dot{E}_o(t)` energy flowing out :py:obj:`outputs` :math:`\eta_i(t)` conversion factor :py:obj:`inflow_conversion_factor[t]` (i.e. efficiency) when storing energy :math:`\eta_o(t)` conversion factor when :py:obj:`outflow_conversion_factor[t]` (i.e. efficiency) taking stored energy :math:`\tau(t)` duration of time step :math:`t_u` time unit of losses :math:`\beta(t)`, :math:`\gamma(t)` :math:`\delta(t)` and timeincrement :math:`\tau(t)` =========================== ======================= ========= **The following parts of the objective function are created:** Nothing added to the objective function. """ CONSTRAINT_GROUP = True def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def _create(self, group=None): """ Parameters ---------- group : list List containing storage objects. e.g. groups=[storage1, storage2,..] """ m = self.parent_block() if group is None: return None i = {n: [i for i in n.inputs][0] for n in group} o = {n: [o for o in n.outputs][0] for n in group} # ************* SETS ********************************* self.STORAGES = Set(initialize=[n for n in group]) self.STORAGES_BALANCED = Set(initialize=[ n for n in group if n.balanced is True]) self.STORAGES_WITH_INVEST_FLOW_REL = Set(initialize=[ n for n in group if n.invest_relation_input_output is not None]) # ************* VARIABLES ***************************** def _storage_capacity_bound_rule(block, n, t): """Rule definition for bounds of capacity variable of storage n in timestep t """ bounds = (n.nominal_storage_capacity * n.min_storage_level[t], n.nominal_storage_capacity * n.max_storage_level[t]) return bounds self.capacity = Var(self.STORAGES, m.TIMESTEPS, bounds=_storage_capacity_bound_rule) def _storage_init_capacity_bound_rule(block, n): return 0, n.nominal_storage_capacity self.init_cap = Var(self.STORAGES, within=NonNegativeReals, bounds=_storage_init_capacity_bound_rule) # set the initial capacity of the storage for n in group: if n.initial_storage_level is not None: self.init_cap[n] = (n.initial_storage_level * n.nominal_storage_capacity) self.init_cap[n].fix() # ************* Constraints *************************** reduced_timesteps = [x for x in m.TIMESTEPS if x > 0] # storage balance constraint (first time step) def _storage_balance_first_rule(block, n): """Rule definition for the storage balance of every storage n for the first timestep. """ expr = 0 expr += block.capacity[n, 0] expr += - block.init_cap[n] * ( 1 - n.loss_rate[0]) ** m.timeincrement[0] expr += (n.fixed_losses_relative[0] * n.nominal_storage_capacity * m.timeincrement[0]) expr += n.fixed_losses_absolute[0] * m.timeincrement[0] expr += (- m.flow[i[n], n, 0] * n.inflow_conversion_factor[0]) * m.timeincrement[0] expr += (m.flow[n, o[n], 0] / n.outflow_conversion_factor[0]) * m.timeincrement[0] return expr == 0 self.balance_first = Constraint(self.STORAGES, rule=_storage_balance_first_rule) # storage balance constraint (every time step but the first) def _storage_balance_rule(block, n, t): """Rule definition for the storage balance of every storage n and every timestep but the first (t > 0) """ expr = 0 expr += block.capacity[n, t] expr += - block.capacity[n, t-1] * ( 1 - n.loss_rate[t]) ** m.timeincrement[t] expr += (n.fixed_losses_relative[t] * n.nominal_storage_capacity * m.timeincrement[t]) expr += n.fixed_losses_absolute[t] * m.timeincrement[t] expr += (- m.flow[i[n], n, t] * n.inflow_conversion_factor[t]) * m.timeincrement[t] expr += (m.flow[n, o[n], t] / n.outflow_conversion_factor[t]) * m.timeincrement[t] return expr == 0 self.balance = Constraint(self.STORAGES, reduced_timesteps, rule=_storage_balance_rule) def _balanced_storage_rule(block, n): """capacity of last time step == initial capacity if balanced""" return block.capacity[n, m.TIMESTEPS[-1]] == block.init_cap[n] self.balanced_cstr = Constraint(self.STORAGES_BALANCED, rule=_balanced_storage_rule) def _power_coupled(block, n): """Rule definition for constraint to connect the input power and output power """ expr = ((m.InvestmentFlow.invest[n, o[n]] + m.flows[n, o[n]].investment.existing) * n.invest_relation_input_output == (m.InvestmentFlow.invest[i[n], n] + m.flows[i[n], n].investment.existing)) return expr self.power_coupled = Constraint( self.STORAGES_WITH_INVEST_FLOW_REL, rule=_power_coupled) def _objective_expression(self): r"""Objective expression for storages with no investment. Note: This adds nothing as variable costs are already added in the Block :class:`Flow`. """ if not hasattr(self, 'STORAGES'): return 0 return 0
[docs]class GenericInvestmentStorageBlock(SimpleBlock): r"""Storage with an :class:`.Investment` object. **The following sets are created:** (-> see basic sets at :class:`.Model` ) INVESTSTORAGES A set with all storages containing an Investment object. INVEST_REL_CAP_IN A set with all storages containing an Investment object with coupled investment of input power and storage capacity INVEST_REL_CAP_OUT A set with all storages containing an Investment object with coupled investment of output power and storage capacity INVEST_REL_IN_OUT A set with all storages containing an Investment object with coupled investment of input and output power INITIAL_STORAGE_LEVEL A subset of the set INVESTSTORAGES where elements of the set have an initial_storage_level attribute. MIN_INVESTSTORAGES A subset of INVESTSTORAGES where elements of the set have an min_storage_level attribute greater than zero for at least one time step. **The following variables are created:** capacity :attr:`om.InvestmentStorage.capacity[n, t]` Level of the storage (indexed by STORAGES and TIMESTEPS) invest :attr:`om.InvestmentStorage.invest[n, t]` Nominal capacity of the storage (indexed by STORAGES) **The following constraints are build:** Storage balance Same as for :class:`.GenericStorageBlock`. Initial capacity of :class:`.network.Storage` .. math:: E(n, -1) = invest(n) \cdot c(n, -1), \\ \forall n \in \textrm{INITIAL\_STORAGE\_LEVEL}. Connect the invest variables of the storage and the input flow. .. math:: InvestmentFlow.invest(source(n), n) + existing = (invest(n) + existing) * invest\_relation\_input\_capacity(n) \\ \forall n \in \textrm{INVEST\_REL\_CAP\_IN} Connect the invest variables of the storage and the output flow. .. math:: InvestmentFlow.invest(n, target(n)) + existing = (invest(n) + existing) * invest\_relation\_output_capacity(n) \\ \forall n \in \textrm{INVEST\_REL\_CAP\_OUT} Connect the invest variables of the input and the output flow. .. math:: InvestmentFlow.invest(source(n), n) + existing == (InvestmentFlow.invest(n, target(n)) + existing) * invest\_relation\_input_output(n) \\ \forall n \in \textrm{INVEST\_REL\_IN\_OUT} Maximal capacity :attr:`om.InvestmentStorage.max_capacity[n, t]` .. math:: E(n, t) \leq invest(n) \cdot c_{min}(n, t), \\ \forall n \in \textrm{MAX\_INVESTSTORAGES,} \\ \forall t \in \textrm{TIMESTEPS}. Minimal capacity :attr:`om.InvestmentStorage.min_capacity[n, t]` .. math:: E(n, t) \geq invest(n) \cdot c_{min}(n, t), \\ \forall n \in \textrm{MIN\_INVESTSTORAGES,} \\ \forall t \in \textrm{TIMESTEPS}. **The following parts of the objective function are created:** Equivalent periodical costs (investment costs): .. math:: \sum_n invest(n) \cdot ep\_costs(n) The expression can be accessed by :attr:`om.InvestStorages.investment_costs` and their value after optimization by :meth:`om.InvestStorages.investment_costs()` . The symbols are the same as in:class:`.GenericStorageBlock`. """ CONSTRAINT_GROUP = True def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def _create(self, group=None): """ """ m = self.parent_block() if group is None: return None # ########################## SETS ##################################### self.INVESTSTORAGES = Set(initialize=[n for n in group]) self.INVESTSTORAGES_BALANCED = Set(initialize=[ n for n in group if n.balanced is True]) self.INVESTSTORAGES_NO_INIT_CAP = Set(initialize=[ n for n in group if n.initial_storage_level is None]) self.INVESTSTORAGES_INIT_CAP = Set(initialize=[ n for n in group if n.initial_storage_level is not None]) self.INVEST_REL_CAP_IN = Set(initialize=[ n for n in group if n.invest_relation_input_capacity is not None]) self.INVEST_REL_CAP_OUT = Set(initialize=[ n for n in group if n.invest_relation_output_capacity is not None]) self.INVEST_REL_IN_OUT = Set(initialize=[ n for n in group if n.invest_relation_input_output is not None]) # The capacity is set as a non-negative variable, therefore it makes no # sense to create an additional constraint if the lower bound is zero # for all time steps. self.MIN_INVESTSTORAGES = Set( initialize=[n for n in group if sum( [n.min_storage_level[t] for t in m.TIMESTEPS]) > 0]) # ######################### Variables ################################ self.capacity = Var(self.INVESTSTORAGES, m.TIMESTEPS, within=NonNegativeReals) def _storage_investvar_bound_rule(block, n): """Rule definition to bound the invested storage capacity `invest`. """ return n.investment.minimum, n.investment.maximum self.invest = Var(self.INVESTSTORAGES, within=NonNegativeReals, bounds=_storage_investvar_bound_rule) self.init_cap = Var(self.INVESTSTORAGES, within=NonNegativeReals) def _inv_storage_init_cap_max_rule(block, n): return block.init_cap[n] <= n.investment.existing + block.invest[n] self.init_cap_limit = Constraint(self.INVESTSTORAGES_NO_INIT_CAP, rule=_inv_storage_init_cap_max_rule) def _inv_storage_init_cap_fix_rule(block, n): return block.init_cap[n] == n.initial_storage_level * ( n.investment.existing + block.invest[n]) self.init_cap_fix = Constraint(self.INVESTSTORAGES_INIT_CAP, rule=_inv_storage_init_cap_fix_rule) # ######################### CONSTRAINTS ############################### i = {n: [i for i in n.inputs][0] for n in group} o = {n: [o for o in n.outputs][0] for n in group} reduced_timesteps = [x for x in m.TIMESTEPS if x > 0] # storage balance constraint (first time step) def _storage_balance_first_rule(block, n): """Rule definition for the storage balance of every storage n and timestep t """ expr = 0 expr += block.capacity[n, 0] expr += - block.init_cap[n] * ( 1 - n.loss_rate[0]) ** m.timeincrement[0] expr += (n.fixed_losses_relative[0] * (n.investment.existing + self.invest[n]) * m.timeincrement[0]) expr += n.fixed_losses_absolute[0] * m.timeincrement[0] expr += (- m.flow[i[n], n, 0] * n.inflow_conversion_factor[0]) * m.timeincrement[0] expr += (m.flow[n, o[n], 0] / n.outflow_conversion_factor[0]) * m.timeincrement[0] return expr == 0 self.balance_first = Constraint(self.INVESTSTORAGES, rule=_storage_balance_first_rule) # storage balance constraint (every time step but the first) def _storage_balance_rule(block, n, t): """Rule definition for the storage balance of every storage n and timestep t """ expr = 0 expr += block.capacity[n, t] expr += - block.capacity[n, t - 1] * ( 1 - n.loss_rate[t]) ** m.timeincrement[t] expr += (n.fixed_losses_relative[t] * (n.investment.existing + self.invest[n]) * m.timeincrement[t]) expr += n.fixed_losses_absolute[t] * m.timeincrement[t] expr += (- m.flow[i[n], n, t] * n.inflow_conversion_factor[t]) * m.timeincrement[t] expr += (m.flow[n, o[n], t] / n.outflow_conversion_factor[t]) * m.timeincrement[t] return expr == 0 self.balance = Constraint(self.INVESTSTORAGES, reduced_timesteps, rule=_storage_balance_rule) def _balanced_storage_rule(block, n): return block.capacity[n, m.TIMESTEPS[-1]] == block.init_cap[n] self.balanced_cstr = Constraint(self.INVESTSTORAGES_BALANCED, rule=_balanced_storage_rule) def _power_coupled(block, n): """Rule definition for constraint to connect the input power and output power """ expr = ((m.InvestmentFlow.invest[n, o[n]] + m.flows[n, o[n]].investment.existing) * n.invest_relation_input_output == (m.InvestmentFlow.invest[i[n], n] + m.flows[i[n], n].investment.existing)) return expr self.power_coupled = Constraint( self.INVEST_REL_IN_OUT, rule=_power_coupled) def _storage_capacity_inflow_invest_rule(block, n): """Rule definition of constraint connecting the inflow `InvestmentFlow.invest of storage with invested capacity `invest` by nominal_storage_capacity__inflow_ratio """ expr = ((m.InvestmentFlow.invest[i[n], n] + m.flows[i[n], n].investment.existing) == (n.investment.existing + self.invest[n]) * n.invest_relation_input_capacity) return expr self.storage_capacity_inflow = Constraint( self.INVEST_REL_CAP_IN, rule=_storage_capacity_inflow_invest_rule) def _storage_capacity_outflow_invest_rule(block, n): """Rule definition of constraint connecting outflow `InvestmentFlow.invest` of storage and invested capacity `invest` by nominal_storage_capacity__outflow_ratio """ expr = ((m.InvestmentFlow.invest[n, o[n]] + m.flows[n, o[n]].investment.existing) == (n.investment.existing + self.invest[n]) * n.invest_relation_output_capacity) return expr self.storage_capacity_outflow = Constraint( self.INVEST_REL_CAP_OUT, rule=_storage_capacity_outflow_invest_rule) def _max_capacity_invest_rule(block, n, t): """Rule definition for upper bound constraint for the storage cap. """ expr = (self.capacity[n, t] <= (n.investment.existing + self.invest[n]) * n.max_storage_level[t]) return expr self.max_capacity = Constraint( self.INVESTSTORAGES, m.TIMESTEPS, rule=_max_capacity_invest_rule) def _min_capacity_invest_rule(block, n, t): """Rule definition of lower bound constraint for the storage cap. """ expr = (self.capacity[n, t] >= (n.investment.existing + self.invest[n]) * n.min_storage_level[t]) return expr # Set the lower bound of the storage capacity if the attribute exists self.min_capacity = Constraint( self.MIN_INVESTSTORAGES, m.TIMESTEPS, rule=_min_capacity_invest_rule) def _objective_expression(self): """Objective expression with fixed and investement costs.""" if not hasattr(self, 'INVESTSTORAGES'): return 0 investment_costs = 0 for n in self.INVESTSTORAGES: if n.investment.ep_costs is not None: investment_costs += self.invest[n] * n.investment.ep_costs else: raise ValueError("Missing value for investment costs!") self.investment_costs = Expression(expr=investment_costs) return investment_costs
[docs]class GenericCHP(network.Transformer): r""" Component `GenericCHP` to model combined heat and power plants. Can be used to model (combined cycle) extraction or back-pressure turbines and used a mixed-integer linear formulation. Thus, it induces more computational effort than the `ExtractionTurbineCHP` for the benefit of higher accuracy. The full set of equations is described in: Mollenhauer, E., Christidis, A. & Tsatsaronis, G. Evaluation of an energy- and exergy-based generic modeling approach of combined heat and power plants Int J Energy Environ Eng (2016) 7: 167. https://doi.org/10.1007/s40095-016-0204-6 For a general understanding of (MI)LP CHP representation, see: Fabricio I. Salgado, P. Short - Term Operation Planning on Cogeneration Systems: A Survey Electric Power Systems Research (2007) Electric Power Systems Research Volume 78, Issue 5, May 2008, Pages 835-848 https://doi.org/10.1016/j.epsr.2007.06.001 Note ---- An adaption for the flow parameter `H_L_FG_share_max` has been made to set the flue gas losses at maximum heat extraction `H_L_FG_max` as share of the fuel flow `H_F` e.g. for combined cycle extraction turbines. The flow parameter `H_L_FG_share_min` can be used to set the flue gas losses at minimum heat extraction `H_L_FG_min` as share of the fuel flow `H_F` e.g. for motoric CHPs. The boolean component parameter `back_pressure` can be set to model back-pressure characteristics. Also have a look at the examples on how to use it. Parameters ---------- fuel_input : dict Dictionary with key-value-pair of `oemof.Bus` and `oemof.Flow` object for the fuel input. electrical_output : dict Dictionary with key-value-pair of `oemof.Bus` and `oemof.Flow` object for the electrical output. Related parameters like `P_max_woDH` are passed as attributes of the `oemof.Flow` object. heat_output : dict Dictionary with key-value-pair of `oemof.Bus` and `oemof.Flow` object for the heat output. Related parameters like `Q_CW_min` are passed as attributes of the `oemof.Flow` object. Beta : list of numerical values Beta values in same dimension as all other parameters (length of optimization period). back_pressure : boolean Flag to use back-pressure characteristics. Set to `True` and `Q_CW_min` to zero for back-pressure turbines. See paper above for more information. Note ---- The following sets, variables, constraints and objective parts are created * :py:class:`~oemof.solph.components.GenericCHPBlock` Examples -------- >>> from oemof import solph >>> bel = solph.Bus(label='electricityBus') >>> bth = solph.Bus(label='heatBus') >>> bgas = solph.Bus(label='commodityBus') >>> ccet = solph.components.GenericCHP( ... label='combined_cycle_extraction_turbine', ... fuel_input={bgas: solph.Flow( ... H_L_FG_share_max=[0.183])}, ... electrical_output={bel: solph.Flow( ... P_max_woDH=[155.946], ... P_min_woDH=[68.787], ... Eta_el_max_woDH=[0.525], ... Eta_el_min_woDH=[0.444])}, ... heat_output={bth: solph.Flow( ... Q_CW_min=[10.552])}, ... Beta=[0.122], back_pressure=False) >>> type(ccet) <class 'oemof.solph.components.GenericCHP'> """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.fuel_input = kwargs.get('fuel_input') self.electrical_output = kwargs.get('electrical_output') self.heat_output = kwargs.get('heat_output') self.Beta = solph_sequence(kwargs.get('Beta')) self.back_pressure = kwargs.get('back_pressure') self._alphas = None # map specific flows to standard API fuel_bus = list(self.fuel_input.keys())[0] fuel_flow = list(self.fuel_input.values())[0] fuel_bus.outputs.update({self: fuel_flow}) self.outputs.update(kwargs.get('electrical_output')) self.outputs.update(kwargs.get('heat_output')) def _calculate_alphas(self): """ Calculate alpha coefficients. A system of linear equations is created from passed capacities and efficiencies and solved to calculate both coefficients. """ alphas = [[], []] eb = list(self.electrical_output.keys())[0] attrs = [self.electrical_output[eb].P_min_woDH, self.electrical_output[eb].Eta_el_min_woDH, self.electrical_output[eb].P_max_woDH, self.electrical_output[eb].Eta_el_max_woDH] length = [len(a) for a in attrs if not isinstance(a, (int, float))] max_length = max(length) if all(len(a) == max_length for a in attrs): if max_length == 0: max_length += 1 # increment dimension for scalars from 0 to 1 for i in range(0, max_length): A = np.array([[1, self.electrical_output[eb].P_min_woDH[i]], [1, self.electrical_output[eb].P_max_woDH[i]]]) b = np.array([self.electrical_output[eb].P_min_woDH[i] / self.electrical_output[eb].Eta_el_min_woDH[i], self.electrical_output[eb].P_max_woDH[i] / self.electrical_output[eb].Eta_el_max_woDH[i]]) x = np.linalg.solve(A, b) alphas[0].append(x[0]) alphas[1].append(x[1]) else: error_message = ('Attributes to calculate alphas ' + 'must be of same dimension.') raise ValueError(error_message) self._alphas = alphas @property def alphas(self): """Compute or return the _alphas attribute.""" if self._alphas is None: self._calculate_alphas() return self._alphas
[docs] def constraint_group(self): return GenericCHPBlock
[docs]class GenericCHPBlock(SimpleBlock): r""" Block for the relation of the :math:`n` nodes with type class:`.GenericCHP`. **The following constraints are created:** .. _GenericCHP-equations1-10: .. math:: & (1)\qquad \dot{H}_F(t) = fuel\ input \\ & (2)\qquad \dot{Q}(t) = heat\ output \\ & (3)\qquad P_{el}(t) = power\ output\\ & (4)\qquad \dot{H}_F(t) = \alpha_0(t) \cdot Y(t) + \alpha_1(t) \cdot P_{el,woDH}(t)\\ & (5)\qquad \dot{H}_F(t) = \alpha_0(t) \cdot Y(t) + \alpha_1(t) \cdot ( P_{el}(t) + \beta \cdot \dot{Q}(t) )\\ & (6)\qquad \dot{H}_F(t) \leq Y(t) \cdot \frac{P_{el, max, woDH}(t)}{\eta_{el,max,woDH}(t)}\\ & (7)\qquad \dot{H}_F(t) \geq Y(t) \cdot \frac{P_{el, min, woDH}(t)}{\eta_{el,min,woDH}(t)}\\ & (8)\qquad \dot{H}_{L,FG,max}(t) = \dot{H}_F(t) \cdot \dot{H}_{L,FG,sharemax}(t)\\ & (9)\qquad \dot{H}_{L,FG,min}(t) = \dot{H}_F(t) \cdot \dot{H}_{L,FG,sharemin}(t)\\ & (10)\qquad P_{el}(t) + \dot{Q}(t) + \dot{H}_{L,FG,max}(t) + \dot{Q}_{CW, min}(t) \cdot Y(t) = / \leq \dot{H}_F(t)\\ where :math:`= / \leq` depends on the CHP being back pressure or not. The coefficients :math:`\alpha_0` and :math:`\alpha_1` can be determined given the efficiencies maximal/minimal load: .. math:: & \eta_{el,max,woDH}(t) = \frac{P_{el,max,woDH}(t)}{\alpha_0(t) \cdot Y(t) + \alpha_1(t) \cdot P_{el,max,woDH}(t)}\\ & \eta_{el,min,woDH}(t) = \frac{P_{el,min,woDH}(t)}{\alpha_0(t) \cdot Y(t) + \alpha_1(t) \cdot P_{el,min,woDH}(t)}\\ **For the attribute** :math:`\dot{H}_{L,FG,min}` **being not None**, e.g. for a motoric CHP, **the following is created:** **Constraint:** .. _GenericCHP-equations11: .. math:: & (11)\qquad P_{el}(t) + \dot{Q}(t) + \dot{H}_{L,FG,min}(t) + \dot{Q}_{CW, min}(t) \cdot Y(t) \geq \dot{H}_F(t)\\[10pt] The symbols used are defined as follows (with Variables (V) and Parameters (P)): =============================== =============================== ==== ======================= math. symbol attribute type explanation =============================== =============================== ==== ======================= :math:`\dot{H}_{F}` :py:obj:`H_F[n,t]` V input of enthalpy through fuel input :math:`P_{el}` :py:obj:`P[n,t]` V provided electric power :math:`P_{el,woDH}` :py:obj:`P_woDH[n,t]` V electric power without district heating :math:`P_{el,min,woDH}` :py:obj:`P_min_woDH[n,t]` P min. electric power without district heating :math:`P_{el,max,woDH}` :py:obj:`P_max_woDH[n,t]` P max. electric power without district heating :math:`\dot{Q}` :py:obj:`Q[n,t]` V provided heat :math:`\dot{Q}_{CW, min}` :py:obj:`Q_CW_min[n,t]` P minimal therm. condenser load to cooling water :math:`\dot{H}_{L,FG,min}` :py:obj:`H_L_FG_min[n,t]` V flue gas enthalpy loss at min heat extraction :math:`\dot{H}_{L,FG,max}` :py:obj:`H_L_FG_max[n,t]` V flue gas enthalpy loss at max heat extraction :math:`\dot{H}_{L,FG,sharemin}` :py:obj:`H_L_FG_share_min[n,t]` P share of flue gas loss at min heat extraction :math:`\dot{H}_{L,FG,sharemax}` :py:obj:`H_L_FG_share_max[n,t]` P share of flue gas loss at max heat extraction :math:`Y` :py:obj:`Y[n,t]` V status variable on/off :math:`\alpha_0` :py:obj:`n.alphas[0][n,t]` P coefficient describing efficiency :math:`\alpha_1` :py:obj:`n.alphas[1][n,t]` P coefficient describing efficiency :math:`\beta` :py:obj:`Beta[n,t]` P power loss index :math:`\eta_{el,min,woDH}` :py:obj:`Eta_el_min_woDH[n,t]` P el. eff. at min. fuel flow w/o distr. heating :math:`\eta_{el,max,woDH}` :py:obj:`Eta_el_max_woDH[n,t]` P el. eff. at max. fuel flow w/o distr. heating =============================== =============================== ==== ======================= """ CONSTRAINT_GROUP = True def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def _create(self, group=None): """ Create constraints for GenericCHPBlock. Parameters ---------- group : list List containing `GenericCHP` objects. e.g. groups=[ghcp1, gchp2,..] """ m = self.parent_block() if group is None: return None self.GENERICCHPS = Set(initialize=[n for n in group]) # variables self.H_F = Var(self.GENERICCHPS, m.TIMESTEPS, within=NonNegativeReals) self.H_L_FG_max = Var(self.GENERICCHPS, m.TIMESTEPS, within=NonNegativeReals) self.H_L_FG_min = Var(self.GENERICCHPS, m.TIMESTEPS, within=NonNegativeReals) self.P_woDH = Var(self.GENERICCHPS, m.TIMESTEPS, within=NonNegativeReals) self.P = Var(self.GENERICCHPS, m.TIMESTEPS, within=NonNegativeReals) self.Q = Var(self.GENERICCHPS, m.TIMESTEPS, within=NonNegativeReals) self.Y = Var(self.GENERICCHPS, m.TIMESTEPS, within=Binary) # constraint rules def _H_flow_rule(block, n, t): """Link fuel consumption to component inflow.""" expr = 0 expr += self.H_F[n, t] expr += - m.flow[list(n.fuel_input.keys())[0], n, t] return expr == 0 self.H_flow = Constraint(self.GENERICCHPS, m.TIMESTEPS, rule=_H_flow_rule) def _Q_flow_rule(block, n, t): """Link heat flow to component outflow.""" expr = 0 expr += self.Q[n, t] expr += - m.flow[n, list(n.heat_output.keys())[0], t] return expr == 0 self.Q_flow = Constraint(self.GENERICCHPS, m.TIMESTEPS, rule=_Q_flow_rule) def _P_flow_rule(block, n, t): """Link power flow to component outflow.""" expr = 0 expr += self.P[n, t] expr += - m.flow[n, list(n.electrical_output.keys())[0], t] return expr == 0 self.P_flow = Constraint(self.GENERICCHPS, m.TIMESTEPS, rule=_P_flow_rule) def _H_F_1_rule(block, n, t): """Set P_woDH depending on H_F.""" expr = 0 expr += - self.H_F[n, t] expr += n.alphas[0][t] * self.Y[n, t] expr += n.alphas[1][t] * self.P_woDH[n, t] return expr == 0 self.H_F_1 = Constraint(self.GENERICCHPS, m.TIMESTEPS, rule=_H_F_1_rule) def _H_F_2_rule(block, n, t): """Determine relation between H_F, P and Q.""" expr = 0 expr += - self.H_F[n, t] expr += n.alphas[0][t] * self.Y[n, t] expr += n.alphas[1][t] * (self.P[n, t] + n.Beta[t] * self.Q[n, t]) return expr == 0 self.H_F_2 = Constraint(self.GENERICCHPS, m.TIMESTEPS, rule=_H_F_2_rule) def _H_F_3_rule(block, n, t): """Set upper value of operating range via H_F.""" expr = 0 expr += self.H_F[n, t] expr += - self.Y[n, t] * \ (list(n.electrical_output.values())[0].P_max_woDH[t] / list(n.electrical_output.values())[0].Eta_el_max_woDH[t]) return expr <= 0 self.H_F_3 = Constraint(self.GENERICCHPS, m.TIMESTEPS, rule=_H_F_3_rule) def _H_F_4_rule(block, n, t): """Set lower value of operating range via H_F.""" expr = 0 expr += self.H_F[n, t] expr += - self.Y[n, t] * \ (list(n.electrical_output.values())[0].P_min_woDH[t] / list(n.electrical_output.values())[0].Eta_el_min_woDH[t]) return expr >= 0 self.H_F_4 = Constraint(self.GENERICCHPS, m.TIMESTEPS, rule=_H_F_4_rule) def _H_L_FG_max_rule(block, n, t): """Set max. flue gas loss as share fuel flow share.""" expr = 0 expr += - self.H_L_FG_max[n, t] expr += self.H_F[n, t] * \ list(n.fuel_input.values())[0].H_L_FG_share_max[t] return expr == 0 self.H_L_FG_max_def = Constraint(self.GENERICCHPS, m.TIMESTEPS, rule=_H_L_FG_max_rule) def _Q_max_res_rule(block, n, t): """Set maximum Q depending on fuel and electrical flow.""" expr = 0 expr += self.P[n, t] + self.Q[n, t] + self.H_L_FG_max[n, t] expr += list(n.heat_output.values())[0].Q_CW_min[t] * self.Y[n, t] expr += - self.H_F[n, t] # back-pressure characteristics or one-segment model if n.back_pressure is True: return expr == 0 else: return expr <= 0 self.Q_max_res = Constraint(self.GENERICCHPS, m.TIMESTEPS, rule=_Q_max_res_rule) def _H_L_FG_min_rule(block, n, t): """Set min. flue gas loss as fuel flow share.""" # minimum flue gas losses e.g. for motoric CHPs if getattr(list(n.fuel_input.values())[0], 'H_L_FG_share_min', None): expr = 0 expr += - self.H_L_FG_min[n, t] expr += self.H_F[n, t] * \ list(n.fuel_input.values())[0].H_L_FG_share_min[t] return expr == 0 else: return Constraint.Skip self.H_L_FG_min_def = Constraint(self.GENERICCHPS, m.TIMESTEPS, rule=_H_L_FG_min_rule) def _Q_min_res_rule(block, n, t): """Set minimum Q depending on fuel and eletrical flow.""" # minimum restriction for heat flows e.g. for motoric CHPs if getattr(list(n.fuel_input.values())[0], 'H_L_FG_share_min', None): expr = 0 expr += self.P[n, t] + self.Q[n, t] + self.H_L_FG_min[n, t] expr += list(n.heat_output.values())[0].Q_CW_min[t] \ * self.Y[n, t] expr += - self.H_F[n, t] return expr >= 0 else: return Constraint.Skip self.Q_min_res = Constraint(self.GENERICCHPS, m.TIMESTEPS, rule=_Q_min_res_rule) def _objective_expression(self): r"""Objective expression for generic CHPs with no investment. Note: This adds nothing as variable costs are already added in the Block :class:`Flow`. """ if not hasattr(self, 'GENERICCHPS'): return 0 return 0
[docs]class ExtractionTurbineCHP(solph_Transformer): r""" A CHP with an extraction turbine in a linear model. For more options see the :class:`~oemof.solph.components.GenericCHP` class. One main output flow has to be defined and is tapped by the remaining flow. The conversion factors have to be defined for the maximum tapped flow ( full CHP mode) and for no tapped flow (full condensing mode). Even though it is possible to limit the variability of the tapped flow, so that the full condensing mode will never be reached. Parameters ---------- conversion_factors : dict Dictionary containing conversion factors for conversion of inflow to specified outflow. Keys are output bus objects. The dictionary values can either be a scalar or a sequence with length of time horizon for simulation. conversion_factor_full_condensation : dict The efficiency of the main flow if there is no tapped flow. Only one key is allowed. Use one of the keys of the conversion factors. The key indicates the main flow. The other output flow is the tapped flow. Note ---- The following sets, variables, constraints and objective parts are created * :py:class:`~oemof.solph.components.ExtractionTurbineCHPBlock` Examples -------- >>> from oemof import solph >>> bel = solph.Bus(label='electricityBus') >>> bth = solph.Bus(label='heatBus') >>> bgas = solph.Bus(label='commodityBus') >>> et_chp = solph.components.ExtractionTurbineCHP( ... label='variable_chp_gas', ... inputs={bgas: solph.Flow(nominal_value=10e10)}, ... outputs={bel: solph.Flow(), bth: solph.Flow()}, ... conversion_factors={bel: 0.3, bth: 0.5}, ... conversion_factor_full_condensation={bel: 0.5}) """ def __init__(self, conversion_factor_full_condensation, *args, **kwargs): super().__init__(*args, **kwargs) self.conversion_factor_full_condensation = { k: solph_sequence(v) for k, v in conversion_factor_full_condensation.items()}
[docs] def constraint_group(self): return ExtractionTurbineCHPBlock
[docs]class ExtractionTurbineCHPBlock(SimpleBlock): r"""Block for the linear relation of nodes with type :class:`~oemof.solph.components.ExtractionTurbineCHP` **The following two constraints are created:** .. _ETCHP-equations: .. math:: & (1)\dot H_{Fuel}(t) = \frac{P_{el}(t) + \dot Q_{th}(t) \cdot \beta(t)} {\eta_{el,woExtr}(t)} \\ & (2)P_{el}(t) \geq \dot Q_{th}(t) \cdot C_b = \dot Q_{th}(t) \cdot \frac{\eta_{el,maxExtr}(t)} {\eta_{th,maxExtr}(t)} where :math:`\beta` is defined as: .. math:: \beta(t) = \frac{\eta_{el,woExtr}(t) - \eta_{el,maxExtr}(t)}{\eta_{th,maxExtr}(t)} where the first equation is the result of the relation between the input flow and the two output flows, the second equation stems from how the two output flows relate to each other, and the symbols used are defined as follows (with Variables (V) and Parameters (P)): ========================= ==================================================== ==== ========= symbol attribute type explanation ========================= ==================================================== ==== ========= :math:`\dot H_{Fuel}` :py:obj:`flow[i, n, t]` V fuel input flow :math:`P_{el}` :py:obj:`flow[n, main_output, t]` V electric power :math:`\dot Q_{th}` :py:obj:`flow[n, tapped_output, t]` V thermal output :math:`\beta` :py:obj:`main_flow_loss_index[n, t]` P power loss index :math:`\eta_{el,woExtr}` :py:obj:`conversion_factor_full_condensation[n, t]` P electric efficiency without heat extraction :math:`\eta_{el,maxExtr}` :py:obj:`conversion_factors[main_output][n, t]` P electric efficiency with max heat extraction :math:`\eta_{th,maxExtr}` :py:obj:`conversion_factors[tapped_output][n, t]` P thermal efficiency with maximal heat extraction ========================= ==================================================== ==== ========= """ CONSTRAINT_GROUP = True def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def _create(self, group=None): """ Creates the linear constraint for the :class:`oemof.solph.Transformer` block. Parameters ---------- group : list List of :class:`oemof.solph.ExtractionTurbineCHP` (trsf) objects for which the linear relation of inputs and outputs is created e.g. group = [trsf1, trsf2, trsf3, ...]. Note that the relation is created for all existing relations of the inputs and all outputs of the transformer. The components inside the list need to hold all needed attributes. """ if group is None: return None m = self.parent_block() for n in group: n.inflow = list(n.inputs)[0] n.main_flow = ( [k for k, v in n.conversion_factor_full_condensation.items()] [0]) n.main_output = [o for o in n.outputs if n.main_flow == o][0] n.tapped_output = [o for o in n.outputs if n.main_flow != o][0] n.conversion_factor_full_condensation_sq = ( n.conversion_factor_full_condensation[n.main_output]) n.flow_relation_index = [ n.conversion_factors[n.main_output][t] / n.conversion_factors[n.tapped_output][t] for t in m.TIMESTEPS] n.main_flow_loss_index = [ (n.conversion_factor_full_condensation_sq[t] - n.conversion_factors[n.main_output][t]) / n.conversion_factors[n.tapped_output][t] for t in m.TIMESTEPS] def _input_output_relation_rule(block): """Connection between input, main output and tapped output. """ for t in m.TIMESTEPS: for g in group: lhs = m.flow[g.inflow, g, t] rhs = ( (m.flow[g, g.main_output, t] + m.flow[g, g.tapped_output, t] * g.main_flow_loss_index[t]) / g.conversion_factor_full_condensation_sq[t] ) block.input_output_relation.add((g, t), (lhs == rhs)) self.input_output_relation = Constraint(group, m.TIMESTEPS, noruleinit=True) self.input_output_relation_build = BuildAction( rule=_input_output_relation_rule) def _out_flow_relation_rule(block): """Relation between main and tapped output in full chp mode. """ for t in m.TIMESTEPS: for g in group: lhs = m.flow[g, g.main_output, t] rhs = (m.flow[g, g.tapped_output, t] * g.flow_relation_index[t]) block.out_flow_relation.add((g, t), (lhs >= rhs)) self.out_flow_relation = Constraint(group, m.TIMESTEPS, noruleinit=True) self.out_flow_relation_build = BuildAction( rule=_out_flow_relation_rule)
[docs]class OffsetTransformer(network.Transformer): """An object with one input and one output. Parameters ---------- coefficients : tuple Tuple containing the first two polynomial coefficients i.e. the y-intersection and slope of a linear equation. The tuple values can either be a scalar or a sequence with length of time horizon for simulation. Notes ----- The sets, variables, constraints and objective parts are created * :py:class:`~oemof.solph.components.OffsetTransformerBlock` Examples -------- >>> from oemof import solph >>> bel = solph.Bus(label='bel') >>> bth = solph.Bus(label='bth') >>> ostf = solph.components.OffsetTransformer( ... label='ostf', ... inputs={bel: solph.Flow( ... nominal_value=60, min=0.5, max=1.0, ... nonconvex=solph.NonConvex())}, ... outputs={bth: solph.Flow()}, ... coefficients=(20, 0.5)) >>> type(ostf) <class 'oemof.solph.components.OffsetTransformer'> """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) if kwargs.get('coefficients') is not None: self.coefficients = tuple([ solph_sequence(i) for i in kwargs.get('coefficients')]) if len(self.coefficients) != 2: raise ValueError( "Two coefficients or coefficient series have to be given.") if len(self.inputs) == 1: for k, v in self.inputs.items(): if not v.nonconvex: raise TypeError( 'Input flows must be of type NonConvexFlow!') if len(self.inputs) > 1 or len(self.outputs) > 1: raise ValueError("Component `OffsetTransformer` must not have " + "more than 1 input and 1 output!")
[docs] def constraint_group(self): return OffsetTransformerBlock
[docs]class OffsetTransformerBlock(SimpleBlock): r"""Block for the relation of nodes with type :class:`~oemof.solph.components.OffsetTransformer` **The following constraints are created:** .. _OffsetTransformer-equations: .. math:: & P_{out}(t) = C_1(t) \cdot P_{in}(t) + C_0(t) \cdot Y(t) \\ .. csv-table:: Variables (V) and Parameters (P) :header: "symbol", "attribute", "type", "explanation" :widths: 1, 1, 1, 1 ":math:`P_{out}(t)`", ":py:obj:`flow[n, o, t]`", "V", "Power of output" ":math:`P_{in}(t)`", ":py:obj:`flow[i, n, t]`", "V","Power of input" ":math:`Y(t)`", ":py:obj:`status[i, n, t]`", "V","binary status variable of nonconvex input flow " ":math:`C_1(t)`", ":py:obj:`coefficients[1][n, t]`", "P", "linear coefficient 1 (slope)" ":math:`C_0(t)`", ":py:obj:`coefficients[0][n, t]`", "P", "linear coefficient 0 (y-intersection)" """ CONSTRAINT_GROUP = True def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def _create(self, group=None): """ Creates the relation for the class:`OffsetTransformer`. Parameters ---------- group : list List of oemof.solph.custom.OffsetTransformer objects for which the relation of inputs and outputs is created e.g. group = [ostf1, ostf2, ostf3, ...]. The components inside the list need to hold an attribute `coefficients` of type dict containing the conversion factors for all inputs to outputs. """ if group is None: return None m = self.parent_block() self.OFFSETTRANSFORMERS = Set(initialize=[n for n in group]) def _relation_rule(block, n, t): """Link binary input and output flow to component outflow.""" expr = 0 expr += - m.flow[n, list(n.outputs.keys())[0], t] expr += (m.flow[list(n.inputs.keys())[0], n, t] * n.coefficients[1][t]) expr += (m.NonConvexFlow.status[list(n.inputs.keys())[0], n, t] * n.coefficients[0][t]) return expr == 0 self.relation = Constraint(self.OFFSETTRANSFORMERS, m.TIMESTEPS, rule=_relation_rule)